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Abstract. Expansion coefficients of the coherent states in the basis of Hamiltonian eigen- 
states contain information about the local character of motion of a quantum system. We 
analyse three quantities: the minimal number of relevant eigenvectors, the sum of moduli 
of coefficients and the Shannon entropy of a coherent state, and show that all of them 
might be used as indicators of quantum chaos. They also allow us to distinguish between 
three known universality classes. Results obtained are confirmed by a numerical study of 
kicked tops. 

1. introduction 

During the last decade an enormous amount of work was done in order to elucidate 
the quantum dynamics of classically chaotic systems (see [ 11 and references therein). 
Several ways in which chaotic motion manifests itself in quantum mechanics were 
found. In particular the level and eigenvector statistics of quantum analogues of 
classically chaotic systems conforms to the predictions of random-matrix theory [2-41. 

Not so much is known about the ‘local’ features of quantum chaotic systems. The 
transition from regular to chaotic motion in classical systems does not occur 
homogeneously: the volume of stochastic layers increases gradually in phase space 
[ 5 ] .  It is therefore interesting to study such quantities of the quantum system which 
allow for an analysis of the quantum-classical correspondence. Local properties of 
quantum systems were usually investigated with help of coherent states (or any other 
localized wavepackets). One approach is based on the Husimi distribution or the Q 
function, i.e. the expansion of an eigenstate of the dynamics in the overcomplete basis 
of coherent states [6-91. 

A complementary picture can be obtained by studying the expansion of a coherent 
state (cs)  in the orthonormal basis of the eigenstates of the Hamiltonian (or the Floquet 
operator in case of time-dependent periodic systems). Statistical properties of com- 
ponents of a particular coherent state in this basis are connected with the quantum 
dynamics. In particular, the distribution of components is in general more homogeneous 
for cs localized in chaotic layers. In order to facilitate the quantitative analysis a 
quantity called number of relevant eigenstates M was introduced and discussed [ 101. 
M can be defined as a minimal number of eigenstates exhausting the normalization 
of cs up to a given reference value r. Numerical calculations have shown that the 
number M was large for a cs localized in the classical phase space in a region of 
chaotic motion. It was therefore conjectured that a correlation between the number 
M and the Lapunov exponent A exists. 

i On leave from: Instytut Fizyki, Uniwersytet Jagiellonski, ul.Reymonta 4, 30-059 Krakbw, Poland. 
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In this work we support this conjecture with additional arguments and study two 
other quantities which provide equivalent characterization of the local properties of a 
quantum system: the sum of moduli of expansion coefficients S and the Shannon 
entropy of coherent state H,. The paper is organized as follows. In section 2 we discuss 
whether the statistics of components of cs in the eigenbasis of the Hamiltonian is 
given by the xt distribution, and the consequences of this assumption. In particular 
analytical formulae for S and H, are derived. In section 3 generalized quantities S (  e )  
and H ( u )  are defined by allowing for suitable free parameters e and U vaguely 
analogous to the reference level r in M ( r ) .  Each family M ( r ) ,  S ( e )  and H( U )  provides 
reasonable chaos indicators since the functional dependence of each quantity on its 
parameter is smooth and without fluctuations. In section 4 periodically kicked tops 
are defined and the numerical results are presented. We show how chaos indicators 
work in a quantum system the classical analogue of which displays regular and chaotic 
behaviour in its phase space. In the case of full developed classical chaos systems 
pertaining to all three known universality classes are analysed. Concluding remarks 
are contained in section 5 .  

2. Expansion of coherent state in eigenbasis of the system 

Consider an arbitrary integrable system Ho with eigenstates I / ) ,  1 = 1, .  . . , N and the 
perturbed system H = Ho+ AV with eigenstates 14i), i = 1, . . . , N. For a perturbation 
parameter A large enough the system may be described by a Gaussian ensemble of 
random matrices (or circular in the case of periodic systems). Depending on the system 
symmetry the orthogonal (oE), unitary (uE), or symplectic ensemble ( S E )  should be 
applied. The distribution of components y = l(l14i)12 of any eigenvector 14i) of the OE 

tends in the limit of N + CO to the Porter-Thomas distribution [ 111: 

P ( Y )  = (24y)Y)-1’2 exp(-y/2(y)) (2.1) 

where the mean value ( y )  is equal to N - ’ .  This formula is a particular case of the xt 
distribution 

with Y = 1 degree of freedom. Let me briefly recall the basic property of this distribution. 
Consider v independent random variables x i ,  i = 1 , .  . . , v. If each variable has the 
Gaussian probability distribution with the mean equal to zero and the variance equal 
to U / &  then the sum of squares y =I;,“=, x f  will obey the xt distribution with mean 
value ( y )  = c2. 

The xt distribution describes the eigenvector statistics also for the unitary ensemble 
with v equal to 2 and for the symplectic ensemble with v equal to 4 [12-141. It can 
be understood as a simple consequence of the fact that the OE is built of real matrices, 
whereas in unitary ensemble the real and imaginary parts of each complex element of 
a matrix are two independent variables. Since two complex numbers form a basic 
element of the symplectic matrix, the ,y2 distribution with four degrees of freedom is 
adequate in this case. It was also conjectured that the x 2  distribution with v+O 
approximates the eigenvector statistics if the perturbation parameter A decreases and 
system becomes regular [ 13,141. No rigorous proof was given, but the numerical results 
do not contradict this statement. 
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The expansion of some fixed vector 1 I >  in the basis of eigenstates 14,) will obviously 
have the same statistical properties. In  a pure chaotic case, described by random 
matrices, the only characteristic of a vector is its own norm. Thus for a large enough 
size of matrix N the components y = l(a14,)12 of an arbitrary coherent state la) in the 
eigenbasis 14,), i = 1,. . . , N will also conform to the xt distribution with v = 1, 2 or 
4 degrees of freedom, depending on the system symmetry. 

It was shown [IO] that a cs localized in the region of classically regular motion 
has a few relevant components in the eigenbasis 14,). This feature is characteristic for 
the xt distribution with O <  v < <  1. It is therefore interesting to analyse consequences 
of the assumption that the ,yt distribution holds for the cs also in the case of transition 
from chaotic to regular motion. 

Let 1  CY^,^) be a cs localized in point { p ,  q }  of the classical phase space and let its 
expansion be 

N 

= 1 44,) .  (2.3) 
1 = 1  

The minimal number of relevant eigenstates M( r )  is defined [lo] as 

In [ 101 the parameter r was set arbitrarily to 0.99. The quantity M seems to be correlated 
with the classical Lapunov exponent: M is large for a cs localized in a chaotic layer. 
We suggest studying two other quantities as well: the sum of moduli S 

N 
s:= IC,] 

r = l  

and the Shannon entropy H ,  of the coherent state 
M 

H,:= - 1 IclIz lnlc~l’. 
l = 1  

(2.6) 

The quantities defined above can be easily evaluated for components /c,1 described 
by the xt distribution. The sum S is (integration should be performed from y = 0 to 
y = 1, but assuming N >> 1 the domain may be extended to infinity) 

S = N ( l c , l ) - N  [ o x f i P v ( y ) d y = v % G ( v )  (2.7) 

where the function G reads in terms of Euler r function 

For different v values, corresponding to different universality classes or various chaos 
conditions in the classical phase space the function G (  v )  takes quite different values: 
G ( 4 ) = 3 / 4 a = 0 . 9 4 ,  G(2) =v‘%/2=0.89, G(1)=-=0.80, lim G(v).,,=O. 
Hence the sum S can be used to distinguish between different regions of the phase 
space of the very same system. 

An analogous result may be obtained for the Shannon entropy of a single coherent 
state 
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where is the digamma function. For a constant matrix dimension N the Shannon 
entropy changes significantly with the ‘chaos’ parameter v. The particular cases of 
(2.9) with v equal to 1 and 4 were recently used to analyse the localization of 
quasi-energy eigenstates [ 15, 161. 

3. One-parameter families of indicators 

The definition of the number of relevant eigenstates involves a parameter r without 
the physical meaning. The quantity M ,  can not be expressed explicitly as the sum S 
and entropy H,, but might be found as a solution of a transcendental equation. For 
a given value of the parameter r let us define x such that 

1: YPJY) dY = r b ) .  (3.1) 

The fraction M , / N  will be then given by 

The above integrals can be expressed by the incomplete r function. Equation (3.1) reads: 

r - + 1  x = r - T  - (2” ’ ) 2” (2”) (3.3) 

and allows us to calculate the value of x as a function of r. The number of relevant 
eigenvectors M ,  is thus estimated by 

(3.4) 

where int[s] denotes the integer part of a real number s. 
Equations (3.3) and (3.4) allow us to compute numerically the number M as a 

function of the parameter r. Such dependencies for v=4 (symplectic case), v=2 
(unitary case), v = 1 (orthogonal case) and v = 0.5 (transition chaos-regular motion) 
are depicted in figure 1( a ) .  The vertical broken line is drawn at r = 0.99, i.e. the value 
used in [lo]. This value, chosen arbitrarily, is as good as any other, except that r 
should not be larger than, say, 0.995 since the v-sensitivity of M ,  would be lost. Relative 
weak and smooth dependence of the number M on the parameter r verifies that this 
quantity is well defined. For three universality classes described by the xt distribution 
with v = 1, 2 and 4 the ratio M O  99/ N is equal to 0.74, 0.86 and 0.93, respectively. 

The number of relevant eigenstates M depends on the free parameter r. One might 
thus consider the other indicators S and H, as more adequate for our purposes, since 
they do not have this ‘disadvantage’. The following quantities can be defined, however: 
the generalized sum S e ;  0 < e ;  e # 2 

A 

s e  = c I C , Y  (3.5) 
r = l  

and the generalized Shannon entropy H,,; O <  U 

(3.6) 
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Figure 1. Dependencies of analysed quantities on the unphysical parameters for Y = 4, 2, 
1 and 0.5. ( a )  Number of relevant eigenstates M ( r ) .  ( b )  Scaled generalized sum D,  = 

S(e)v%. Broken vertical lines show the usual values of parameters. 

The particular cases of (3.5) and  (3.6) with e = U = 1 have been considered in section 
3. We can take, however, any other value of the parameters e and U ,  e.g. e = U = 1.1, 
and  the new quantities S, and  (nevertheless 

is directly connected to the localization length-a quantity with the physical 
meaning [16-181). Assuming the ,Y: distribution for the IciI2 components of a cs we 
obtain following formulae for generalized sum and entropy 

are as good for our aim as S,.o and  

and  

(3 .7 )  

The functions Se and H, also depend monotonically on the free parameters. The 
generalized sum D2 = S , m  is presented in figure l ( b )  as a function of e. The matrix 
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dimension was taken N = 100. A broken vertical line is drawn at e = 1.0-the value of 
the parameter e used in the numerical study of kicked top. The function Se loses its 
meaning if the parameter e tends to 2, since S7 is equal to one for every normalized 
state. For e > 2 ,  on the other hand, the generalized sum can also be useful. Quantity 
S4.0, known as the inverse participation ratio [ 19-21], was exploited for many years 
in solid state physics to characterize the localization in a system. 

4. Numerical study of kicked top 

Periodically kicked tops have proven to be a suitable testing ground for various problems 
of quantum chaology. The dynamical variables of these models are the three com- 
ponents of an angular momentum operator J which obey the commutation relation 
[J,, J,] = i.s,,Jk. The Hamiltonian 

n = r x  

H = H o + V  1 6 ( r - n )  (4.1) 
n=- -x  

with Ho and V being functions of J , ,  i = 1,3, describes the kicked top model. Depending 
on properties of Ho and V systems pertaining to each of the three known universality 
classes exist [22]. The particular model defined by 

JI 
2 j  

V = k -  (4.2) Ho = PJ, 

under condition of classical chaos can be described by the orthogonal ensemble since 
an antiunitary symmetry exists [ lo].  For small values of the kicking strength k islands 
of stability appear in the classical phase space, and for k equal to zero the model 
becomes integrable. 

It is convenient to analyse the quantum system in the eigenbasis of the operator 
Jz,  Ij, m), m = -j, . . . , j .  In the classical limit j + a7 the normalized vector X = J / j  lies 
on the unit sphere. The time evolution of the corresponding classical model can be 
given by a map for three components (X, Y, Z )  of the angular momentum vector. The 
classical map reads [ lo]  

X ’  = ( X  cos p + Z sin p )  cos( kZ cos p )  + Y sin( k X  sin p )  
Y’ = -(X cos p + Z sin p )  sin( kX sin p )  + Y cos( kZ cos p )  (4.3) 

The above transformation maps the position of the top between subsequent kicks. 
Since the norm of vector X is conserved the dynamics of the system can be represented 
by a two-dimensional phase space. Two angles 6, cp have been chosen: 2 =cos 0, 
Y = sin 6 sin cp. 

Figure 2 shows several trajectories of the classical map (4.3) with p = r / 2  and 
k = 3.0. The whole spherical surface is projected on a plane, so the lines 6 = 0 and 
6 = 7~ correspond to the north and south pole, respectively. The value of the perturbation 
parameter k is chosen such that the chaotic layer dominates in the phase space, but 
four stability islands localized in the vicinity of fixed points are well distinguishable. 

In order to compare the dynamics of the corresponding quantum model states 
localized in the phase space have to be introduced. We shall use directed angular 
momentum states 16, cp) generated from the state 1 j ,  j )  by the unitary rotation operator 

(4.4) 

Z ’ = - X  s i n p + Z c o s p .  

R(6 ,  cp)=exp[ie(J, sin cp-J, cos p)]. 
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Q 
Figure 2. Phase space portrait of classical kicked top for k = 3.0. 

Such states exhaust the uncertainty principle with relative variance proportional to l / j  
and shrinking to zero in the classical limit j + a. The explicit expansion of the coherent 
state 10, cp) in the basis /j, m )  reads [23]: 

where y = exp(ip) tan( 0/2).  
We have constructed a family of cs  localized on a meridian (cp = 37r/4, 0 s 0 s 7 ~ ) .  

This cross section of the phase space (denoted in figure 2 by a broken vertical line) 
intersects the stability island for 0.8 < 0 1.4. The quasi-energy eigenstates were 
obtained by numerical diagonalization of the Floquet operator 

F = exp( -ipJ, ) exp( -ikJ:/2j) (4.6) 

and the cs were expanded in the eigenbasis of F. Three quantities defined in the 
previous paragraphs: the minimal number of relevant states M ( r  = 0.99), the sum 
S = and the entropy H ,  = H ,  were calculated for each coherent state. To present 
them on the same graph the following scaled quantities have been used: D, = M /  N, 
D,=S/v%and D3=[H,+\11(3/2)]/ln(N/2) (see(2.9)),where N = 2 j + l  isthematrix 
dimension. 

The functional dependencies of D, on 6 are depicted in figure 3 for the same values 
of system parameters ( k  = 3.0, p = ~ / 2 )  with j = 50 (figure 3 ( a ) )  and j = 200 (figure 
3 ( b ) ) .  Three horizontal broken lines are drawn at 0.73, 0.79 and 1.0 and denote 
predictions for D , ,  Dz and D3 obtained in section 2 and 3 for fully chaotic systems 
described by xt distribution with v = 1. At the first glance the presence of stability 
island in the classical phase space may be recognized-all three curves display a 
dominant minimum at 0 2 1.1. Note the similar behaviour of all quantities also in the 
chaotic region of 0 > 1.8. Also in this region each curve D, lies below the corresponding 
broken line. According to equations (2.7), (2.9) and (3.4) all the quantities D, do not 
depend on the size of matrix N. In the chaotic region of the classical phase space 
changes of the quantities investigated with the matrix dimension are insignificant 
indeed. 
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Figure 3. Properties of coherent states of the quantum system with k = 3.0 localized at the 
broken line of figure 2. Fraction of relevant eigenstates D, = M / N ,  scaled sum of moduli 
D, = S / m  and scaled Shannon entropy D3=[H,+Y(3/2) ] / ln (N/2)  are drawn as a 
function of 0. ( a )  j = 50. ( b )  j = 200. 

It was suggested [ 101 that the correlation between the number of relevant eigenstates 
and the Lapunov exponent becomes stronger as j increases, since the cs of a smaller 
width becomes more precise tool to detect islands of stability. This statement is now 
supported by the following observation: the minimum of all curves is more pronounced 
in figure 3( b )  obtained for a larger j value. This feature cannot be explained by means 
of xt distribution, since the results obtained for the quantities Di do not depend on 
the matrix dimension N. In other words, the ,y? distribution is not fully adequate in 
the case of transition to classically regular motion. 

We have shown how the analysed indicators can reveal local features of quantum 
dynamics. Now the possibility of distinguishing between systems pertaining to different 
universality classes will be demonstrated. Figure 4(a)  is drawn for the system (4.2) 
with fully developed chaos ( k  = 9.0, p = 7r/2). The chaotic layer covers uniformly the 
whole phase space and all three curves Di display only small fluctuations around the 
mean values. Predictions based on the xt distribution are well fulfilled: all three 
indicators oscillate around the broken lines which denote values obtained for quantities 
Di for the OE. 
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Figure 4. As in figure 3 for systems pertaining to different universality classes. ( a )  
Orthogonal case k = 9.0, d = 0.0, j = 200. ( b )  Unitary case k = 9.0, d = 1.0, j = 200. ( c )  
Symplectic case p = k = 5.0, d ,  = 0.1, d2 = 2.0, j = 299.5. 
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Figure 4( b )  shows an example of the model pertaining to the U E  so the eigenvectors 
statistics is given by the ,yt distribution with v = 2. The Floquet operator consists of 
three unitary factors [ l o ]  

(4.7) 

The diagonalization of (4.7) was performed for p = ~ / 2 ,  k = 9.0 and  d = 1.0. The 
lowest broken line in figure 4(b)  is plotted at v = 2)/  N = 0.86; the centre broken 
line plotted at G(2 )  = 0.89 denotes prediction for scaled sum D 2 .  The Shannon entropy 
is now scaled D3 = [HS+\1'(2)]/ln( N)  so its value received from equation (2.9) is equal 
to one. 

The system given by the Hamiltonian (4.2) does not pertain to the symplectic 
ensemble. The presumably simplest case reads [22] 

F = exp( -ipJ, ) exp( -ikJz/2j) exp( -idJ:/2j). 

(4.8) 

where [ , ]+ denotes anticommutator. For a half-integer value of j the quartic level 
repulsion characteristic of the SE was found [22]. Figure 4 (c )  is obtained for the system 
(4.8) with j=299.5 ,  p = k=5 .0 ,  d ,  =0.1, dz=2.0 .  For this half-integer value of j 
Kramers' degeneracy occurs; therefore each coherent state is built of N = (2 j+  1) /2  
components. The Shannon entropy is now scaled as D3 = [ H ,  + Y(3)] / ln(2N) ,  in order 
to have according to (2.9) D3 = 1. Two other broken lines are placed at G(4)  and  
MO 99(4)/ N = 0.933. Also in the symplectic case all three indicators conform well to 
the predictions based on the x:, distribution. 

The amplitudes of fluctuations of quantities D, around the values predicted by 
equations (2.7), (2.9) and  (3.4) are largest for OE (figure 4 (a ) ) ,  smaller for U E  (figure 
4(b)) and  smallest for S E  (figure 4(c) ) .  Each component of orthogonal, unitary or 
symplectic ensembles is built of Y = 1, 2 or 4 independent variables, respectively. 
Calculation of values of every function of these components (like discussed indicators 
D,  , D,, D 3 )  contains an  intrinsic averaging over v random variables. Thus smallest 
fluctuations are observed in the symplectic case with v = 4. 

5. Discussion 

A possibility to obtain relevant information concerning local features of the quantum 
systems has been pointed out. There are several ways to analyse the whole set of 
expansion coefficients of a localized wavepacket in the basis of the Hamiltonian 
eigenstates. I have discussed three quantities revealing statistical properties of this 
expansion: the number of relevant eigenstates M,  the sum of moduli of components 
S and the Shannon entropy H , .  All of them allow us to distinguish between quantum 
states placed in chaotic or regular regions of the classical phase space and may therefore 
be applied as quantum indicators of chaos. 

It should be stressed, however, that the above criteria are not applicable without 
restriction: they are not appropriate for systems where the dynamical localization 
occurs, like the model of the kicked rotator [ 16,241. 

Each of the three chaos indicators may be generalized into a one-parameter family, 
Different members of each family are not distinguished from one another by any 
physical arguments. A family yields acceptable chaos indicators if its members follow 
one another reasonably smoothly as the parameter is varied continuously. All three 
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families turn out to be equally acceptable in this sense. In  particular, each of them 
allows the distinction of dominating regular and  fully chaotic behaviour in the classical 
limit. Moreover, in the case of classical chaos the universality class of a given dynamics 
can be expressed as orthogonal, unitary or symplectic by each indicator. 

Numerical studies of kicked tops confirm the predictions of random-matrix theory. 
The xt distribution describes the statistics of components of a cs in chaotic systems, 
while the number of degrees of freedom v is equal 1 , 2  or  4, depending on the symmetry 
of a given model. On the other hand, use of the xt distribution does not lead to 
appropriate dependence of the quantities M ,  S or H, on the matrix dimension N in 
the mixed case of transition to regular motion. Therefore a need for a more adequate 
family of distributions, interpolating between the Porter-Thomas distribution (chaotic 
case) and l / y  behaviour (regular case) appears. 

Of great interest is the question whether a direct correlation between the classical 
Lapunov exponent A and one of three quantities M,  S or H, describing the quantum 
system exists. Finding an  explicit relation M ( A ,  N )  would certainly push forward our 
understanding of the classical-quantum correspondence in the chaotic systems. 
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Note added in proof: Quite recently W Wootters has pointed out that the statistics of components of coherent 
state in the eigenbasis of the system depends not only on the universality class of the system, but also on 
the symmetry properties of the cs itself (Wootters 1990 Foundations of Physics to appear). In particular the 
cs applied to investigate the ‘orthogonal’ top (4.6) are invariant under a generalized time-reversal symmetry 
[lo]. Thus the values of all three indicators depicted in figure 4 ( a )  agree with predictions obtained above 
for U =  1. On the other hand the eigenvector statistics of those cs which do not possess any antiunitary 
symmetry is well approximated by the case of v = 2, characteristic to the unitary ensemble, even though the 
system pertains to the orthogonal universality class (Zyczkowski 1990 Proc. Workshop on Quantum Chaos 
Trieste, 4.06-6.07.1990 (Singapore: World Scientific) to appear). I am indebted to W Wootters for drawing 
my attention to this point and prociding his results prior to publication. 
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